The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae

نویسندگان

  • Kamran Anwar
  • Robin W. Klemm
  • Amanda Condon
  • Katharina N. Severin
  • Miao Zhang
  • Rodolfo Ghirlando
  • Junjie Hu
  • Tom A. Rapoport
  • William A. Prinz
چکیده

The endoplasmic reticulum (ER) forms a network of tubules and sheets that requires homotypic membrane fusion to be maintained. In metazoans, this process is mediated by dynamin-like guanosine triphosphatases (GTPases) called atlastins (ATLs), which are also required to maintain ER morphology. Previous work suggested that the dynamin-like GTPase Sey1p was needed to maintain ER morphology in Saccharomyces cerevisiae. In this paper, we demonstrate that Sey1p, like ATLs, mediates homotypic ER fusion. The absence of Sey1p resulted in the ER undergoing delayed fusion in vivo and proteoliposomes containing purified Sey1p fused in a GTP-dependent manner in vitro. Sey1p could be partially replaced by ATL1 in vivo. Like ATL1, Sey1p underwent GTP-dependent dimerization. We found that the residual ER-ER fusion that occurred in cells lacking Sey1p required the ER SNARE Ufe1p. Collectively, our results show that Sey1p and its homologues function analogously to ATLs in mediating ER fusion. They also indicate that S. cerevisiae has an alternative fusion mechanism that requires ER SNAREs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structures of the yeast dynamin-like GTPase Sey1p provide insight into homotypic ER fusion

Homotypic membrane fusion of the endoplasmic reticulum is mediated by dynamin-like guanosine triphosphatases (GTPases), which include atlastin (ATL) in metazoans and Sey1p in yeast. In this paper, we determined the crystal structures of the cytosolic domain of Sey1p derived from Candida albicans. The structures reveal a stalk-like, helical bundle domain following the GTPase, which represents a ...

متن کامل

Physiological lipid composition is vital for homotypic ER membrane fusion mediated by the dynamin-related GTPase Sey1p

Homotypic fusion of the endoplasmic reticulum (ER) is required for generating and maintaining the characteristic reticular ER membrane structures. This organelle membrane fusion process depends on the ER-bound dynamin-related GTPases, such as atlastins in animals and Sey1p in yeast. Here, to investigate whether specific lipid molecules facilitate GTPase-dependent ER membrane fusion directly, we...

متن کامل

ER-associated retrograde SNAREs and the Dsl1 complex mediate an alternative, Sey1p-independent homotypic ER fusion pathway

The peripheral endoplasmic reticulum (ER) network is dynamically maintained by homotypic (ER-ER) fusion. In Saccharomyces cerevisiae, the dynamin-like GTPase Sey1p can mediate ER-ER fusion, but sey1Δ cells have no growth defect and only slightly perturbed ER structure. Recent work suggested that ER-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate...

متن کامل

Homotypic membrane fusion of the endoplasmic reticulum is mediated by dynamin-like guanosine triphosphatases

The ER network consists of a continuous membrane system of tubules and sheets (Shibata et al., 2006). ER membranes are interconnected by homotypic fusion to maintain a reticular pattern and proper functioning. In metazoans, fusion is mediated by a class of dynamin-like GTPases called atlastin (ATL; Hu et al., 2009; Orso et al., 2009). In other eukaryotic organisms lacking ATL, a similar class o...

متن کامل

SNAREs support atlastin-mediated homotypic ER fusion in Saccharomyces cerevisiae

Dynamin-like GTPases of the atlastin family are thought to mediate homotypic endoplasmic reticulum (ER) membrane fusion; however, the underlying mechanism remains largely unclear. Here, we developed a simple and quantitative in vitro assay using isolated yeast microsomes for measuring yeast atlastin Sey1p-dependent ER fusion. Using this assay, we found that the ER SNAREs Sec22p and Sec20p were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 197  شماره 

صفحات  -

تاریخ انتشار 2012